Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Genom ; 9(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37043267

RESUMO

While the world is still recovering from the Covid-19 pandemic, monkeypox virus (MPXV) awaits to cause another global outbreak as a challenge to all of mankind. However, the Covid-19 pandemic has taught us a lesson to speed up the pace of viral genomic research for the implementation of preventive and treatment strategies. One of the important aspects of MPXV that needs immediate insight is its evolutionary lineage based on genomic studies. Utilizing high-quality isolates from the GISAID (Global Initiative on Sharing All Influenza Data) database, primarily sourced from Europe and North America, we employed a SNP-based whole-genome phylogeny method and identified four major clusters among 628 MPXV isolates. Our findings indicate a distinct evolutionary lineage for the first MPXV isolate, and a complex epidemiology and evolution of MPXV strains across various countries. Further analysis of the host-pathogen interaction network revealed key viral proteins, such as E3, SPI-2, K7 and CrmB, that play a significant role in regulating the network and inhibiting the host's cellular innate immune system. Our structural analysis of proteins E3 and CrmB revealed potential disruption of stability due to certain mutations. While this study identified a large number of mutations within the new outbreak clade, it also reflected that we need to move fast with the genomic analysis of newly detected strains from around the world to develop better prevention and treatment methods.


Assuntos
COVID-19 , Mpox , Humanos , Monkeypox virus/genética , Filogenia , Pandemias , Mutação
2.
Indian J Microbiol ; 62(3): 323-337, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35974919

RESUMO

A rigorous exploration of microbial diversity has revealed its presence on Earth, deep oceans, and vast space. The presence of microbial life in diverse environmental conditions, ranging from moderate to extreme temperature, pH, salinity, oxygen, radiations, and altitudes, has provided the necessary impetus to search for them by extending the limits of their habitats. Microbiology started as a distinct science in the mid-nineteenth century and has provided inputs for the betterment of mankind during the last 150 years. As beneficial microbes are assets and pathogens are detrimental, studying both have its own merits. Scientists are nowadays working on illustrating the microbial dynamics in Earth's subsurface, deep sea, and polar regions. In addition to studying the role of microbes in the environment, the microbe-host interactions in humans, animals and plants are also unearthing newer insights that can help us to improve the health of the host by modulating the microbiota. Microbes have the potential to remediate persistent organic pollutants. Antimicrobial resistance which is a serious concern can also be tackled only after monitoring the spread of resistant microbes using disciplines of genomics and metagenomics The cognizance of microbiology has reached the top of the world. Space Missions are now looking for signs of life on the planets (specifically Mars), the Moon and beyond them. Among the most potent pieces of evidence to support the existence of life is to look for microbial, plant, and animal fossils. There is also an urgent need to deliberate and communicate these findings to layman and policymakers that would help them to take an adequate decision for better health and the environment around us. Here, we present a glimpse of recent advancements by scientists from around the world, exploring and exploiting microbial diversity.

5.
Genomics ; 112(2): 1956-1969, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31740292

RESUMO

Members of genus Sphingopyxis are known to thrive in diverse environments. Genomes of 21 Sphingopyxis strains were selected. Phylogenetic analysis was performed using GGDC, AAI and core-SNP showed agreement at sub-species level. Based on our results, we propose that both S. baekryungensis DSM16222 and Sphingopyxis sp. LPB0140 strains should not be included under genus Sphingopyxis. Core-analysis revealed, 1422 genes were shared which included essential pathways and genes for conferring adaptation against stress environment. Polyhydroxybutyrate degradation, anaerobic respiration, type IV secretion were notable abundant pathways and exopolysaccharide, hyaluronic acid production and toxin-antitoxin system were differentially present families. Interestingly, genome of S. witflariensis DSM14551, Sphingopyxis sp. MG and Sphingopyxis sp. FD7 provided a hint of probable pathogenic abilities. Protein-Protein Interactome depicted that membrane proteins and stress response has close integration with core-proteins while aromatic compounds degradation and virulence ability formed a separate network. Thus, these should be considered as strain specific attributes.


Assuntos
Genoma Bacteriano , Sphingomonadaceae/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Filogenia , Mapas de Interação de Proteínas , Sphingomonadaceae/classificação , Sphingomonadaceae/metabolismo , Estresse Fisiológico , Sistemas Toxina-Antitoxina
6.
Antonie Van Leeuwenhoek ; 110(10): 1357-1371, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28831610

RESUMO

The current prokaryotic taxonomy classifies phenotypically and genotypically diverse microorganisms using a polyphasic approach. With advances in the next-generation sequencing technologies and computational tools for analysis of genomes, the traditional polyphasic method is complemented with genomic data to delineate and classify bacterial genera and species as an alternative to cumbersome and error-prone laboratory tests. This review discusses the applications of sequence-based tools and techniques for bacterial classification and provides a scheme for more robust and reproducible bacterial classification based on genomic data. The present review highlights promising tools and techniques such as ortho-Average Nucleotide Identity, Genome to Genome Distance Calculator and Multi Locus Sequence Analysis, which can be validly employed for characterizing novel microorganisms and assessing phylogenetic relationships. In addition, the review discusses the possibility of employing metagenomic data to assess the phylogenetic associations of uncultured microorganisms. Through this article, we present a review of genomic approaches that can be included in the scheme of taxonomy of bacteria and archaea based on computational and in silico advances to boost the credibility of taxonomic classification in this genomic era.


Assuntos
Archaea/classificação , Bactérias/classificação , Técnicas de Tipagem Bacteriana , Biologia Computacional , Genômica , Genoma Arqueal/genética , Genoma Bacteriano/genética , Metagenoma , Anotação de Sequência Molecular , Filogenia
7.
Int J Syst Evol Microbiol ; 55(Pt 5): 1965-1972, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16166696

RESUMO

Three strains of Sphingomonas paucimobilis, B90A, UT26 and Sp+, isolated from different geographical locations, were found to degrade hexachlorocyclohexane. Phylogenetic analysis based on 16S rRNA gene sequences indicated that these strains do not fall in a clade that includes the type strain, Sphingomonas paucimobilis ATCC 29837(T), but form a coherent cluster with [Sphingomonas] chungbukensis IMSNU 11152(T) followed by Sphingobium chlorophenolicum ATCC 33790(T). The three strains showed low DNA-DNA relatedness values with Sphingomonas paucimobilis ATCC 29837(T) (8-25%), [Sphingomonas] chungbukensis IMSNU 11152(T) (10-17%), Sphingobium chlorophenolicum ATCC 33790(T) (23-54%) and Sphingomonas xenophaga DSM 6383(T) (10-28%), indicating that they do not belong to any of these species. Although the three strains were found to be closely related to each other based on 16S rRNA gene sequence similarity (99.1-99.4%), DNA-DNA relatedness (19-59%) and pulsed-field gel electrophoresis (PFGE) patterns indicated that they possibly represent three novel species of the genus Sphingobium. The three strains could also be readily distinguished by biochemical tests. The three strains showed similar polar lipid profiles and contained sphingoglycolipids. The strains differed from each other in fatty acid composition but contained the predominant fatty acids characteristic of other Sphingobium species. A phylogenetic study based on 16S rRNA gene sequences showed that [Sphingomonas] chungbukensis IMSNU 11152(T) formed a cluster with members of the genus Sphingobium. Based on these results, it is proposed that strains B90A, UT26 and Sp+, previously known as Sphingomonas paucimobilis, are the type strains of Sphingobium indicum sp. nov. (=MTCC 6364(T)=CCM 7286(T)), Sphingobium japonicum sp. nov. (=MTCC 6362(T)=CCM 7287(T)) and Sphingobium francense sp. nov. (=MTCC 6363(T)=CCM 7288(T)), respectively. It is also proposed that [Sphingomonas] chungbukensis be transferred to Sphingobium chungbukense comb. nov.


Assuntos
Proteínas de Bactérias/genética , Hexaclorocicloexano/metabolismo , Sphingomonadaceae/classificação , Sphingomonas/classificação , Proteínas de Bactérias/metabolismo , Técnicas de Tipagem Bacteriana , Biodegradação Ambiental , DNA Bacteriano/análise , DNA Ribossômico/análise , Genes de RNAr , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Fenótipo , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Sphingomonadaceae/enzimologia , Sphingomonadaceae/genética , Sphingomonadaceae/fisiologia , Sphingomonas/enzimologia , Sphingomonas/genética , Sphingomonas/fisiologia
8.
J Ind Microbiol Biotechnol ; 30(4): 195-204, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12687493

RESUMO

The genus Amycolatopsis is of industrial importance, as its species are known to produce commercial antibiotics. It belongs to the family Pseudonocardiaceae and has an eventful taxonomic history. Initially strains were identified as Streptomyces, then later as Nocardia. However, based on biochemical, morphological and molecular features, the genus Amycolatopsis, containing seventeen species, was created. The development of molecular genetic techniques for this group has been slow. The scarcity of molecular genetic tools including stable plasmids, antibiotic resistance markers, transposons, reporter genes, cloning vectors, and high efficiency transformation protocols has made progress slow, but efforts in the past decade have led to the development of cloning vectors and transformation methods for these organisms. Some of the cloning vectors have broad host range (pRL series) whereas others have limited host range (pMEA300 and pMEA100). The cloning vector pMEA300 has been completely sequenced, while only the minimal replicon (pA- rep) has been sequenced from pRL plasmids. Direct transformation of mycelia and electroporation are the most widely applicable methods for transforming species of Amycolatopsis. Conjugational transfer from Escherichia coli has been reported only in the species A. japonicum, and gene disruption and replacements using homologous recombination are now possible in some strains.


Assuntos
Actinomycetales/genética , Clonagem Molecular/métodos , Técnicas de Transferência de Genes , Microbiologia Industrial/métodos , Transformação Bacteriana , Plasmídeos/genética
9.
Appl Environ Microbiol ; 68(12): 6021-8, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12450824

RESUMO

Hexachlorocyclohexane (HCH) has been used extensively against agricultural pests and in public health programs for the control of mosquitoes. Commercial formulations of HCH consist of a mixture of four isomers, alpha, beta, gamma, and delta. While all these isomers pose serious environmental problems, beta-HCH is more problematic due to its longer persistence in the environment. We have studied the degradation of HCH isomers by Sphingomonas paucimobilis strain B90 and characterized the lin genes encoding enzymes from strain B90 responsible for the degradation of HCH isomers. Two nonidentical copies of the linA gene encoding HCH dehydrochlorinase, which were designated linA1 and linA2, were found in S. paucimobilis B90. The linA1 and linA2 genes could be expressed in Escherichia coli, leading to dehydrochlorination of alpha-, gamma-, and delta-HCH but not of beta-HCH, suggesting that S. paucimobilis B90 contains another pathway for the initial steps of beta-HCH degradation. The cloning and characterization of the halidohydrolase (linB), dehydrogenase (linC and linX), and reductive dechlorinase (linD) genes from S. paucimobilis B90 revealed that they share approximately 96 to 99% identical nucleotides with the corresponding genes of S. paucimobilis UT26. No evidence was found for the presence of a linE-like gene, coding for a ring cleavage dioxygenase, in strain B90. The gene structures around the linA1 and linA2 genes of strain B90, compared to those in strain UT26, are suggestive of a recombination between linA1 and linA2, which formed linA of strain UT26.


Assuntos
Proteínas de Bactérias/genética , Genes Bacterianos/fisiologia , Hexaclorocicloexano/metabolismo , Liases , Sphingomonas/metabolismo , Clonagem Molecular , Escherichia coli/genética , Hidrolases/genética , Sphingomonas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...